
1

[Winter 2021] CS 687 Capstone Project
Proposal

A Case Study of Software Reengineering using
Emerging Cloud Computing: A Non-profit's

National Math Competition Event Management System

Huixian Eunice Yuan

Advisor: Sam Chung, Ph.D.
Master of Science in Computer Science (MSCS)

School of Technology & Computing (STC)

City University of Seattle (CityU)
[yuanhuixian@cityuniversity.edu, chungsam@cityu.edu]

Abstract
Recently, there is some research about software reengineering, but few kinds of analysis use cloud
computing technologies to demonstrate software reengineering for web application technologies. Cloud
computing also will be an emerging computing paradigm that will affect information systems, such as
event management systems. Therefore, this project will propose some best practices of doing software
reengineering using AWS cloud computing services and web application technologies based on the case

study of the KSEA National Math Competition event management system. We fill the knowledge gaps in
software reengineering for web applications using cloud computing technologies with these best

practices.

Keywords: Software Reengineering, Event Management System, Cloud Computing, AWS Cloud
Computing Services, Web Application, Architectural Models.

1. INTRODUCTION

Problem Statement
This project aims to propose best practices of
software reengineering a legacy web application
to an emerging target system using AWS cloud

computing services. We choose the KSEA National
Math Competition event management system to
do software reengineering as a case study.

Motivation

According to Chung et al. (2009), a legacy system
could be visualized with a re-documented

technique, 5W1H, to find the candidate services
and some reusable business logic used in the
target system. Chikofsky et al. (1990) defined
reverse engineering and redocumentation.
Nguyen (2011) also proposed definitions,
approaches, processes, and risks of software
reengineering. However, all of them did not use

cloud computing technologies in their research.

Besides, cloud computing is an emerging
computing paradigm that will affect legacy
information systems. Thus, it is essential and
meaningful to demonstrate best practices about
how to reengineer a legacy information system to
an advanced target information system using

clouding computing technologies.

Approach
The paper uses software reengineering
methodology, AWS cloud computing services, and

web application technologies to analyze and
modernize a legacy KSEA National Math

Competition (NMC) Event Management System
(EMS) to develop an advanced target system and
identify best practices of this process.

Conclusions
The paper aims to generate some best practices
of software reengineering with AWS cloud

computing services and web application

2

technologies through a case study for the actual

KSEA NMC EMS. These best practices describe the
whole process of software reengineering with
AWS cloud computing services and web

application technologies based on a real case
study and fill the knowledge gaps of this field.

2. BACKGROUND

Software Reengineering: According to Nguyen
(2011), software reengineering is a complicated
improvement or transformation of existing

software. According to Manzella and Mutafelija
(1992), software reengineering mainly includes
reverse engineering and forward engineering.
Chikofsky (1990) states that reverse engineering
uses redocumentation and design recovery to

analyze a system. Analyzing a system can get

"the system's components and their
interrelationships and create representations of
the system in another form or at a higher level of
abstraction." Design recovery can get high-level
abstractions by code, domain knowledge, and
design documentation.

5W1H Re-Doc: According to Chung et al. (2009),
the legacy system can be visualized as a visual
model in Unified Modeling Language (UML) to find
the candidate services and some reusable
business logic using the 5W1H re-documentation
methodology. The 5W1H re-documentation
methodology is "Who was involved in re-

documentation, What happened for re-

documentation, When did re-documentation take
place, Where did re-documentation take place,
Why did re-documentation happen, and How did
re-documentation happen." Chung et al. (2009)
used Kruchten’s 4+1 views to define “where”

(Kruchten, 1995).

4+1 views: In Kruchten's (1995) paper, the 4+1
views consist of "Use case View (UV), Design View
(DV), ProcessView (PV), Implementation View
(IV), and Deployment View (LV)." The 4+1 views
stand for use requirements, class hierarchies,

message exchange, source code, and
relationships.

UML: According to GeeksforGeeks (2019) and
uml.org, Unified Modeling Language (UML) is a
universal modeling language to define a standard
method to visualize a software system and

describe the software system's behavior and
structure.

Scrum: According to Deemer's (2012) paper,
Scrum is a "development framework in which
cross-functional teams develop products or

projects in an iterative, incremental manner. It

structures development in cycles of work called

Sprints". A Scrum Team has a Product Owner,
Scrum Master, and Team. A team will choose a
project and make a target to finish. Each project

has several sprints, and each has the same length
and fixed content. Every day the team gathers to
check the progress and adjust the next steps.

Information System: In Bourgeois (2019), an
information system is a combination of
"hardware, software, data, people, and

processes." The "hardware, software, and data
are technologies to collect, process, store, and
distribute information," and the "people and
processes" are responsible for separate the
theory of information systems from other
technologies.

KSEA NMC EMS: Both the Legacy and Target
Information Systems is the KSEA National Math
Competition (NMC) Event Management System
(EMS). According to KSEA (2021), the Korean-
American Scientists and Engineers Association
(KSEA) is a non-profit association and focuses on

engineering and science fields. The association
aims to help Korean-American develop their
careers in engineering and science fields. The
NMC aims to improve students' mathematical and
scientific abilities. The KSEA NMC EMS is a system
to manage event registrations and report exam
results to the KSEA headquarter, local chapters,

and each participant.

AWS: According to Rungta (2020), Amazon Web
Service (AWS) is a platform that can provide
some flexible, spent-less, and scalable cloud
computing solutions. In AWS (2020), Elastic

Compute Cloud (EC2) is a web service that can
"provide resizable compute capacity." Elastic
Beanstalk is an application container that helps
use web applications in services. Elastic Container
Services (ECS) provides some API to help use
Docker container applications and some
functions. Relational Database Service (RDS)

helps manage relational databases. Serverless
Computing is to manage applications without
services.

React and JavaScript: In Morris (2020), React.js
is an open-source web front-end framework and
JavaScript library to "build interactive elements

on websites." JavaScript is a programming
language to "create and control dynamic web
content."

Laravel and PHP: In Heddings (2020), Laravel is
an open-source server-side web framework to

support model-view-controller (MVC) software
architecture in PHP. According to Morris (2018),

3

Hypertext Preprocessor (PHP) is a server-side

scripting language used in web development.

Nginx: Nginx is also a web server that uses an

"asynchronous, event-driven architecture to
handle these massive amounts of connections."

MySQL: In Talend (2020), MySQL is a "relational
database management system (RDBMS) based
on structured query language (SQL)."

3. RELATED WORK

Recently, there is much research about software
reengineering in different aspects. Many
researchers focus their research on the theory
and framework knowledge of software

reengineering.

Manzella and Mutafelija (1992) fully described a
development life cycle steps integrated with
reverse engineering and forward engineering to
generate a new reengineering life-cycle
framework. Waheed (1992) stated reengineering
software was an easy way to convert code from

proprietary language to commercial language.
This process could be done by "use
programmable program transformation tools to
partially translate the code to a standard
commercial language." Therefore, Waheed
(1992) provided some programmable tools and
partial translation results from these tools to

prove that reengineering existing code through

partial translation can reduce costs and improve
efficiency. Nguyen (2011) thought that software
reengineering was a useful tool to improve the
legacy system to a new target system. He
summarized the process of software

reengineering, including definitions, approaches,
processes, and risks, which could be a basis for
other researchers. However, Manzella and
Mutafelija (1992), Waheed (1992), and Nguyen
(2011) only were interested in the theoretical
knowledge of software reengineering. However,
Li (2011) focused on doing software

reengineering using a scientific software, SeisSol.
Li concluded that software reengineering could
help a scientific software improve source code,

software system, extensibility, and complexity by
using a "domain-specific requirements model"
and new reengineering ways.

According to Nguyen's (2011) paper, reverse
engineering is one of the software reengineering
steps. Some researchers not only pay attention to
software reengineering but also have in-depth
research on software reverse engineering.

Chikofsky and Cross (1990) provided the

definitions of six terms for software
reengineering: forward engineering, reverse
engineering, re-documentation, design recovery,

restructuring, and reengineering, which help
rationalize and apply these terms to the
underlying engineering processes. According to
Chung et al.'s (2009) research, they came up with
a re-documentation methodology, 5W1H Re-Doc,
to visualize the legacy system to discover the
candidate services and some reusable business

logic used in the legacy system. Chikofsky and
Cross focused on underlying software
reengineering concepts. Chung et al. focused on
service-oriented software engineering. Tonella
(2005) focused on reverse engineering for source
code. He introduced a code analysis framework

and proposed several UML view-designed
technologies with a running example to help
reverse engineering for source code, including
object, interaction, class diagrams, and so on.
Fouad and Mohamed (2018) showed a method to
help understand integrity constraints and
improve database reverse engineering and

database migration, maintenance, and resetting
of systems using Object-Relational Database
(ORDB) by generating a conceptual schema (CS)
in an ORDB with integrity constraints. This
method supplements the research on constraints
in relational databases in reverse engineering.

Although there are many studies on software
reengineering, a few researchers consider doing

software reengineering using cloud computing
technologies.

Ahmad and Babar (2014) provided a framework

for utilizing software reengineering to restore the
old source code's architecture based on the
reengineering horseshoe model. The framework
has four processes, including restoring the
original architecture from source code and
migration from legacy system to cloud, and so on.
Zalazar, Gonnet, and Leone (2015) proposed a

workflow of migrating applications to cloud
computing based on different applications'
characteristics and the characteristics and
deployment models of cloud computing. They

presented a workflow to show how the workflow
works according to features and deployment
models using a beverage distributor company.

Sabiri and Benabbou (2017) came up with a
meta-model that provided the basis for
modernizing the old version of the application and
the cloud service model's mobile selection. With
this meta-model, companies analyzed a legacy
system from business viewpoints,

implementation and data viewpoints, and
infrastructure viewpoints and modernized the

4

legacy system with a suitable cloud service.

Besides, Ellison, Calinescu, and Paige (2014)
described the database reverse engineering and
data migration problems in reengineering the

database layer of legacy applications in the cloud.

Review Conclusions
These papers' main research issues focused on
three parts: classical software reengineering,
reverse engineering, and the use of cloud
computing technology for software

reengineering. Some findings from these
references include:
These references almost focused on using
different framework knowledge to do software
reengineering or reverse engineering research.
However, only a few research studies were

related to use actual case studies to do software
reengineering with cloud computing technologies.
It is a feasible method to use cloud computing for
software reengineering. This method needs to
consider the type of cloud computing
technologies, the type of functions reused in the
system, the appropriate architectural model, etc.

4. APPROACH

This project will be a case study to propose best
practices of how to do the software reengineering
using cloud computing for a non-profit's national
math competition to modernize the event
management system as the legacy system to an

advanced target system. In Table 1, three

references in the first row come from Section 3
Related Work. We classify them in terms of
reverse engineering only (Chung et al, 2009),
reverse and forward software engineering i.e.,
software reengineering (Li, 2011), and software

reengineering with cloud computing technologies
(Ahmad & Babar, 2014). The first column shows
comparison criteria. The other columns show how
each reference used each criterion. Thus, Table 1
compares our approaches to the approaches from
Section 3 to show differences between our
approaches and others.

TABLE 1 DIFFERENCES BETWEEN OUR APPROACHES

AND OTHERS

Criteria
(Chung et
al., 2009)

(Li, 2011)
(Ahmad &

Babar, 2014)
My Approach

Software Ree

ngineering
Reverse

Reverse /

Forward

Reverse /

Forward

Reverse /

Forward

Best

Practices

5W1H Re-

Doc

Document

of Source

Code,

Redesign

& Require

Framework
for Migration

of Legacy

Systems

to Cloud-

enabled

Software

5H1W Re-

Doc Methodol
ogy / Forwar

d Engineer wi

th cloud com

puting servic

es & web tec

hnologies

Cloud Compu

ting Services
No No

Cloud-

based Archite

ctures

AWS Cloud

Computing S

ervices

Web Applicati
on Technolog

ies

No No No

Client-

/Server-side
Web Framew

ork /

Web Server

/ RDMS

Legacy/Targe

t Systems

Web /

Console Appli

cations

SeisSol Scien

tific Software
No

KSEA NMS

EMS

Architectural
Models

UML / 4+1
View Model

No No
UML / 4+1
View Model

Our Approaches to this process include five steps:
First, analyze the given legacy system. The legacy
system is the KSEA NMC EMS with some source
code files. We can be familiar with the legacy
system structure and discover some designs by

analyzing the source code files.

Second, reverse engineer the legacy system by
using the 5W1H re-documentation methodology.
We use a Computer-Aided Software Engineering
(CASE) tool to generate UML diagrams to identify
the legacy system based on the 5W1H re-
documentation methodology.

Thirdly, identify new cloud computing services
and web technologies. The AWS cloud computing
services and some web application technologies
are chosen to do forward engineering based on
the legacy system's UML diagrams.

Fourthly, forward engineer the generated

architectural models using AWS cloud computing
services and some web application technologies.
The outcome of forwarding engineering will
develop a new emerging EMS on AWS.

Lastly, propose the best practices of software

reengineering. The best practices describe the
whole process of software reengineering with
AWS cloud computing services and web
application technologies.

 5. DATA COLLECTION

This paper uses the case study method of

qualitative research to collect the necessary data.

The case study is based on the legacy KSEA NMC
EMS.

We collected the data below:
First, source code files. We collected source code

files from the legacy KSEA NMC EMS: PHP files
and SQL files, which are essential for software
reengineering. We ran the source code files in the
Visual Studio Code and found an NMC, and two
database schemas, including a member database
schema and an NMC database schema.

5

Second, legacy app model and target app model.
We separately drew a legacy app model and a
target app model by a CASE tool using Chung's

(2009) 5W1H re-doc methodology based on the
source code files, including some visual diagrams
of the legacy system and the target system in
different views. The target diagrams were based
on the improved and upgraded legacy diagrams
and only focused on the student registration
object’s use case diagram, sequence diagram,

and class diagram. The CASE tool we used in this
project is Sparx's Enterprise Architecture. We
draw different diagrams for each view: a
deployment diagram for deployment view, a
component diagram for implementation view, a
class diagram for static design view, a sequence

diagram for dynamic design view, and a use case
diagram for use case view. Figure 1 through
figure 5 shows the diagrams of the legacy app
model. Figure 6 to figure 8 shows the diagrams of
the target app model.

Figure 1. Legacy Deployment Diagram

Figure 2. Legacy Component Diagram

Figure 3. Legacy Class Diagram

Figure 4. Legacy Sequence Diagram

Figure 5. Legacy Use Case Diagram

Figure 6. Target Use Case Diagram of The Student

Registration Object

Figure 7. Target Sequence Diagram of The Student

Registration Object

6

Figure 8. Target Class Diagram of The Student

Registration Object

Third, legacy database model and target
database model. We found the legacy database
model in the legacy static design view and
improved the model and drew a target database
model. Both the legacy database model and the

target database model include a member

database diagram and an NMC database
diagram. Figure 9 and figure 10 show two legacy
database diagrams. Figure 11 and figure 12
show two target database diagrams.

Figure 9. Legacy Member Database Diagram

Figure 10. Legacy NMC Database Diagram

Figure 11. Member Database Diagram of the Target

System

Figure 12. NMC Database Diagram of the Target

System

6. DATA ANALYSIS

We collected the source code files from the legacy
system and drew the legacy and target system
diagrams by 5W1H re-doc methodology in
Section 5. The data analysis is shown in two

parts:

1. Legacy and target NMC source code:

First, legacy NMC source code. According to the

figure 1 through figure 5, the source code was
divided into several functional elements by the
divide and conquer strategy, such as login,

registration, and logout element, etc. Each
functional element had its attributes and
operations. Besides, each functional element
could communicate and could be grouped by its
functions. However, there was not any pattern
followed by the source code.

7

Second, target NMC source code. According to the

figure 6 through figure 8, this target source code
focused on a student object and a student
registration class rather than system functions.

The student registration class is one of the
attributes and methods, which the student object
had. The target source code was also designed as
a Model layer and even will focus on the View and
Controller layers later.

2. Legacy and target database:

First, the naming ways of table names and
column names. In figure 11 and figure 12, all the
table names were unique, singular, and lowercase
words and used underscore to separate each

word. The column names were named in the
same way and avoided abbreviated and using
numbers and reserve words. And most column

names were no-longer than two terms. But in
figure 9 and figure 10, the table names and
column names did not use these ways to name.

Second, primary keys and constraints. All tables
in both figure 11 and figure 12 identified their

non-null primary keys and their constraints, and
the column names and data types of primary keys
are easy understand and unique. However, only
several tables in figure 9 and figure 10 had
primary keys. Besides, some column names of
primary keys were hard to understand.

Third, foreign keys and relationships among
tables. We identified all the foreign keys, their
constraints, and relationships in the tables of
figure 11 and 12. The column names of the
foreign keys had the tables' names where the
primary key column was located. We also deleted
unnecessary tables that did not have relationship

with other tables. But figure 9 and figure 10 did
not identify any foreign keys, constraints, and
relationships.

7. FINDINGS

According to Section 6, this section will be

divided into two parts to explain the specific
findings mainly.

1. Legacy and target NMC source code:

First, legacy NMC source code. According to
Tutorialspoint (2021), we can identify that the
legacy source code used the Structured Design
design method to design but did not use any

architecture pattern because the legacy source
code's design method followed the feature of
Structured Design.

Second, According to Tutorialspoint (2021),
target NMC source code. Although the target
source code only focused on the student object

and the student registration class, we still can
identify the target source code used Object-
Oriented Design (OOD) to design and even
design the whole system by the OOD. Besides,
we can find that the target source code was
developed by the MVC architecture pattern.

2. Legacy and target database:

First, the naming ways of table names and
column names. Each database, table, and
column satisfied the MySQL name convention

general rules (Pandey, 2015): the database
column names were singular, no space, and
lowercase words; the column names were

singular, lowercase and avoided number, space,
abbreviated, and reserve words.

Second, primary keys and constraints. Each
table's column primary keys are not null and
uniquely identified the columns, which satisfied

the database entity integrity rules and
constraints (Watt & Eng, 2014).

Third, foreign keys and relationships among
tables. Each table of the databases had its
foreign keys and relationships, and each foreign
key had its matching primary keys, which meant

that each reference was valid. All of them
indicate the databases satisfied the database
referential integrity rules and constraints (Watt
& Eng, 2014).

8. IMPLEMENTATION TECHNOLOGIES

The AWS cloud computing technologies used to

implement the legacy system to a serverless
web app are shown below:
First, AWS Amplify. AWS Amplify can be used to
host the static web resources of the target web
app.

Second, Amazon Cognito. Amazon Cognito can
do user management and authentication for the

target web app to allow users to register and
login into the system and so on.

Third, Amazon API Gateway. API Gateway will
be used as a RESTful interface to call Lambda

function code.

Fourth, AWS Lambda. Lambda and API Gateway
can form a public backend API, that is, a
serverless backend, to send and receive data.

8

Fifth, Amazon Relational Database Service
(RDS). RDS can manage and operate a relational
database in AWS to store the app data.

9. CONCLUSION

With a CASE tool and the 5W1H re-doc
methodology, the legacy KSEA NMC EMS was
reverse engineered to some visual diagrams of
different views. We used these visual diagrams to
improve to be some visual diagrams of the target

system. Based on the collected and analyzed
database class diagram data, we conclude some
best practices of making a good database. First,
the web application design should consider using
Object-Oriented Design and the MVC software

architecture pattern to form a fixed frame and

make the whole structure more logical. Second,
the database's table and column names should
follow the MySQL name conventions general
rules. Third, each table should ensure the
database entity integrity and referential integrity
rules and constraints.

10. FUTURE WORK

Due to the complicated and huge KSEA NMC
EMS, we only developed the legacy visual model
and a small part of the target visual model. We
also identified the implementation technologies,
but without implementing the legacy NMC EMS

to the new web app with AWS cloud computing

technologies. Therefore, we plan to finish the
whole target visual model and forward engineer
a new EMS on AWS by the implementation
technologies for future work.

11. REFERENCE

GeeksforGeeks. (2019, April 1). Unified Modeling

Language (UML) | An Introduction.
https://www.geeksforgeeks.org/unified-
modeling-language-uml-introduction/

Jiang, J. Z. Architectural Blueprints–The “4+ 1”
View Model of Software Architecture.

Deemer P., Benefield G., Larman C., and Vodde
B. (2012). Scrum Primer. Retrieved from

http://scrumprimer.org/scrumprimer20_sma
ll.pdf

KSEA (2021, February 3). 2021 KSEA
Undergraduate and KSEA-KUSCO Graduate
Scholarships Announcement. KSEA.
https://ksea.org/us/

Bourgeois, D. (2019, August 12). Chapter 1:

What Is an Information System? Information
Systems for Business and Beyond (2019).

https://opentextbook.site/informationsystem

s2019/chapter/chapter-1-what-is-an-
information-system-information-systems-
introduction/

AWS Products | AWS Cloud Service list | AWS.
(2020). Amazon Web Services, Inc.
https://www.amazonaws.cn/en/products/

Rungta, K. (2020, December 15). What is AWS?
Amazon Cloud Services Tutorial. Guru99.
https://www.guru99.com/what-is-aws.html

Morris, S. (2020, October 13). Tech 101: What is

React JS? Skillcrush.
https://skillcrush.com/blog/what-is-react-js/

Leslie, A. (2018). Attention Required! |
Cloudflare. Hostingadvice.Com.

https://www.hostingadvice.com/how-
to/nginx-vs-apache/#performance

Morris, S. (2018, October 25). Everything You
Need to Know About PHP. Skillcrush.
https://skillcrush.com/blog/php/

Heddings, A. (2020, September 16). What Is
Laravel, And How Do You Get Started with It?
Cloudsavvyit.
https://www.cloudsavvyit.com/1535/what-

is-laravel-and-how-do-you-get-started-with-
it/

What is MySQL? Everything You Need to Know |
Talend. (2020, October 12). Talend Real-
Time Open Source Data Integration Software.

https://www.talend.com/resources/what-is-
mysql/

Nguyen, P. V. (2011). The Study and Approach of
Software Re-Engineering. arXiv preprint
arXiv:1112.4016

Manzella, J., & Mutafelija, B. (1992, January).
Concept of re-engineering life-cycle. In
Proceedings of the Second International

Conference on Systems Integration (pp. 566-
567). IEEE Computer Society.
10.1109/ICSI.1992.217306

Waheed, M. A. (1992, November). A practical
approach to re-engineering software. In
Proceedings of the 1992 conference of the

Centre for Advanced Studies on Collaborative

research-Volume 1 (pp. 295-298).

Li, Y. (2011, May). Reengineering a scientific
software and lessons learned. In Proceedings
of the 4th international workshop on Software
engineering for computational science and
engineering (pp. 41-45). https://dl-acm-
org.proxy.cityu.edu/doi/10.1145/1985782.1

985789

9

Chikofsky, E. J., & Cross, J. H. (1990). Reverse

engineering and design recovery: A
taxonomy. IEEE Software, 7(1), 13-17.
10.1109/52.43044

Chung, S., Won, D., Baeg, S. H., & Park, S.
(2009, December). Service-oriented reverse
reengineering: 5W1H model-driven re-
documentation and candidate services
identification. 2009 IEEE International
Conference on Service-Oriented Computing
and Applications (SOCA).

https://doi.org/10.1109/soca.2009.5410445

Tonella, P. (2005, May). Reverse engineering of
object oriented code. In Proceedings. 27th
International Conference on Software
Engineering, 2005. ICSE 2005. (pp. 724-

725). IEEE. https://doi-

org.proxy.cityu.edu/10.1145/1062455.1062
637

Fouad, T., & Mohamed, B. (2018, January).
Reverse Engineering of Object Relational
Database. In Proceedings of the 2018
International Conference on Software
Engineering and Information Management

(pp. 73-76). https://doi-
org.proxy.cityu.edu/10.1145/3178461.3178
481

Ahmad, A., & Babar, M. A. (2014). A framework
for architecture-driven migration of legacy
systems to cloud-enabled software. In

Proceedings of the WICSA 2014 Companion

Volume (pp. 1-8). https://doi-
org.proxy.cityu.edu/10.1145/2578128.2578
232

Zalazar, A. S., Gonnet, S., & Leone, H. (2015).
Migration of Legacy Systems to Cloud
Computing. Electronic Journal of SADIO

(EJS), 14, 42-55.

Ellison, M., Calinescu, R., & Paige, R. (2014,
December). Re-Engineering the database
layer of legacy applications for scalable cloud
deployment. In 2014 IEEE/ACM 7th
International Conference on Utility and Cloud
Computing (pp. 976-979). IEEE. https://doi-

org.proxy.cityu.edu/10.1109/UCC.2014.160

Sabiri, K., & Benabbou, F. (2017, March). A
Legacy Application Meta-model for
Modernization. In Proceedings of the 2nd
International Conference on Big Data, Cloud
and Applications (pp. 1-6). https://doi-
org.proxy.cityu.edu/10.1145/3090354.3090

385

Pandey, A. R. (2015, May 10). MySQL naming /
coding conventions: tips on mySQL database.

How To Tutorials.

https://anandarajpandey.com/2015/05/10/
mysql-naming-coding-conventions-tips-on-
mysql-

database/#:%7E:text=MySQL%20Name%2
0conventions%20general%20rules,not%20li
ke%20project%2C%20james%2C%20e.t.c

Watt, A., & Eng, N. (2014, October 24). Chapter
9 Integrity Rules and Constraints – Database
Design – 2nd Edition. Pressbooks.
https://opentextbc.ca/dbdesign01/chapter/c

hapter-9-integrity-rules-and-constraints/

Tutorialspoint. (2021). Software Design
Strategies - Tutorialspoint.
https://www.tutorialspoint.com/software_en
gineering/software_design_strategies.htm

https://doi-org.proxy.cityu.edu/10.1145/3090354.3090385
https://doi-org.proxy.cityu.edu/10.1145/3090354.3090385
https://doi-org.proxy.cityu.edu/10.1145/3090354.3090385
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c
https://anandarajpandey.com/2015/05/10/mysql-naming-coding-conventions-tips-on-mysql-database/#:%7E:text=MySQL%20Name%20conventions%20general%20rules,not%20like%20project%2C%20james%2C%20e.t.c

