
1

Winter 2022-CS 687 Capstone Project
Progress Report

Kafka Streaming Application using Java Spring
Boot

Anand Mohan
Advisor: Dr. Sion Yoon
MS in Computer Science

School of Technology & Computing (STC)
City University of Seattle (CityU)

Abstract
The purpose of this research paper is to implement a microservice approach for data streaming
applications. Data is the new fuel to business, and it is growing enormously day by day. Handling and
processing these data using the traditional database with batch processing is very slow and will not help
businesses. So, there is a need for processing this data in real-time. Data streaming is one of the
methods used for data processing in real-time. There is a mechanism that needs to publish and consume
this data from the streaming application, and microservices help to achieve the same. Java and Spring
framework provides an easy development environment to achieve this. Finally, a database is
implemented to save the data.

Keywords: Kafka, Kafka Topics, Kafka Publishing and consuming, Streaming, Java, Spring Boot,
Postgres, Relational Database

1. INTRODUCTION
As technology advances day by day, data is the
new fuel for the business. So, good data can help
to improve the business. For example, in the
retail market, this data can help to understand
the current trend of the market is, customers'
choices, improve decision making, and more. So,
when we say data, it is not just one or two. It is
in the millions or trillions of data. Reading these
data using standard REST APIs is not efficient and
involves a lot of effort needed for implementation.
So there comes the need to have an efficient way
of handling data, and streaming is the best option
for this. As part of this research, microservices
will be developed which can publish and consume
messages from streaming applications like Kafka
and massage those data as per the need or
requirement and save it in the database for
specific use.

Problem Statement
With the market moving towards more streaming
applications, there is a need to read these

messages using any app and write them into
database tables based on certain filters or
requirements. This data in the table will be used
for the app or future usage.

Recent market trends have shown that data
streaming is the future. Many big companies like
Netflix, Uber, Spotify heavily use data streaming.
Reading these trillions of data in real-time helps
to make decisions quickly and fast. As part of this
research, microservices will be developed to read
the streaming message from Kafka, and after
consuming these messages, a filter is being
applied based on the requirement. And finally, the
required data will be saved in the database.
Postgres database will be explored for this as it
provides a relational open-source database.

Motivation
Publishing the message to Kafka and consuming
the data with low latency is critical for the
streaming app. Java spring boot technology
provides many Kafka libraries that help to read

2

these messages with constant linear time. So,
building a real-time streaming application and
transforming that data to be customized as per
need. Another important factor to consider during
this flow is that there isn’t any data loss, and
better performance could be achieved.

Approach
The overall approach for this project can be
divided into three parts

• Kafka deployment and implementation.
• Postgres database implementation and

deployment.
• Java Spring boot app development and

integration with Kafka and database.

Most of the information needed for the overall
project can be obtained from the related books
and by exploring the previous works done by
others.
Conclusion
This project is aimed to have an end-to-end flow
of streaming applications. The messages should
be produced in Kafka topics by Java app by a
separate service and then consumed by the Java
app by another service and finally the data to be
persisted inside the Postgres database.

2. BACKGROUND
As part of this research paper, I was able to
identify most of the tasks that need to be
performed, and I decided to categorize them
into three sections as below.

• Installing and spinning up Kafka local.
• Create a Java app using Spring boot for

producing and consuming the message
from Kafka.

• Once the message is read, save the
details to PostgreSQL.

The main objective of this research paper is to
understand the details of streaming applications.
Apache Kafka and Confluent are the main
providers for this. They publish streams of
events to a broker. The consumers of these
event streaming can access each stream as per
their requirements and consume the preferred
event, and once consumed, these events are
then retained by the broker. One of the key
advantages of the event streaming process is
that the records are persistent. This helps to
process both historical data as well as real-time
data without the worry of deletion by a broker.
Most of these system works on the principle of
publish/subscribe methodology. This approach
allows systems to transfer events to multiple
consumers asynchronously. This way, it can be
quoted that this is an effective way of

decoupling subsystems and managing
communications independently.
Microservice creation is the second task related
to this research paper. With the fast moving and
competitive market, there is a need to have
technology also to adapt to these changes
quickly. For this, microservice plays a vital role
as these can start small and iterate fast. With
Java and Spring Boot, the quick start is easily
possible, and packaging these source codes as a
jar helps to get installed in any machine
irrespective of the operating system.
Relational databases provide an easy-to-query
approach for the data. Oracle provides a good
relational database, but that is expensive. So
there needs to find an open-source relational
database that is robust, secure, and scalable.
PostgreSQL is one of the leading providers of the
relational database.

3. RELATED WORK
As this research paper is more of technical
paper. I was able to explore most of the
concepts through the study books available. I
also explored some of the related works
performed related to data streaming. Some of
the challenges that may encounter while
implementing are mentioned below.

Literature Review

Why is there a need for data streaming?
The traditional way of handling big data is by
batch processing. With this approach, some of
the main disadvantages is that

• Creates stale data- As batch processing
takes some time to process, there is a
very high chance of processing the stale
data.

• It can irreversibly transform the source
data

• Source data is not persisted (htt9)

The market is very competitive now, and most
of the big tech companies are moving towards
an event streaming approach (Hanif, 2020). The
main reasoning behind this is businesses want to
consume, process, and analyze data quickly to
make the decision that will impact the business
directly (Tu, 2020). Traditional batch processing
may take weeks or even months to process data
and will have adverse impacts on business.

How does Spring Boot Java application help
in easy development of data streaming?

Studies have shown that the Spring Boot
framework, which is a subproject under Spring,
is becoming very popular (Zhang, 2021). The

3

main advantage of the Spring Boot framework is
that the Tomcat web server is integrated within
and can run directly without deployment.
Traditional framework heavily uses XML
configuration, and this can be overcome by
spring boot annotations. Development with the
usage of annotation is fast and reduces the
effort of a development cycle. As this research
includes integration with third-party streaming
applications like Confluent Kafka, Database,
spring boot can automatically configure and
manage dependencies, making it ease the
development activity to integrate with this third-
party application.

What is the importance of Database?

For any application, there is a need for the
system to effectively store and manage data
(Lubis, 2017). Database helps in this process. It
organizes, describes, and store according to a
certain data model. There comes the next
question of whether to choose a relational
database or a non-relational database. Research
studies have shown that relational database is
easy to use and provide more data accuracy
(Fotache, 2013).
For this research paper, I opted for a relational
database and should be open source.
PostgreSQL is one of the leading providers of
open-source relational database. It is easy to
install and manage.

Review Conclusions

The studies on streaming applications and
microservices show that a systematic approach
is needed (Korolov, 2017). There is a need to
come up with a solid design process on how to
integrate these different modules. Careful and
precise external libraries should be picked while
developing the microservices. Extra unwanted
libraries will become a burden and will make the
service heavy and should be avoided.
Testing and validation is another aspect to
consider once the service is fully functional. This
will help in getting the issues that may
encounter during its implementation and in the
future enhancements.

4. APPROACH
After reading through the textbooks related to
Kafka Streaming, Microservices, and Databases,
I was able to come up with a broader picture of
the approach that needs to be followed. A piece
of very basic customer information containing the
first name and last name will be streamed

through the Kafka topics. More insight on the
approach is detailed below.
User Requirements
Below are some of the high-level user
requirements.

• Customer basic information like first
name and last name are only published
in the Kafka topics.

• The Java app should start in the local
machine without any error.

• Kafka broker and Zookeeper should be
started locally without any error.

• The microservice should be able to
publish to Kafka topics successfully after
successful authentication.

• The microservice should be able to
consume the messages from Kafka
topics after successful authentication.

• After consuming, the microservice
should be able to write the details to the
PostgreSQL database successfully.

Design
An overall End-to-End design is shown in Figure
1.

Figure 1: Overall End-to-End Design

The publisher service is only responsible for
publishing the message to Kafka topics, and the
consumer service is only responsible for reading
the message from the Kafka topics. The entity
class defined in the Java app is responsible for
writing the message into the database.

Implementation
Kafka
Apache Kafka will be first installed in the
machine, and once the basic configuration is set
up, it will be started in the local machine. Once
the Kafka application starts running, topics will
be created for publishing and consuming.
(Shapira, 2021)Two partitions will be created for
topics to have better scalability and replication.
Messages to Kafka are produced as key-value
pairs, where the key will be a unique identifier to
identify the message, and the value will be the
actual data. For the research purpose, a JSON
representation of the data will be produced to
Kafka topics. Here for the project, this JSON
data consist of first name and last name. A
sample payload for the data is shown in Figure 2
(Narkhede, 2017).

4

Figure 2: Sample Kafka JSON data

Microservices
The Java Spring Boot application will be
developed as shown on the design page. As part
of this research paper, the publisher and
consumer will be developed under one Java app,
and the services, i.e., the publisher and
consumer service, will be created under separate
classes with respective annotations. Kafka
libraries for Spring Boot have many annotation
methods that allow to publish and consume
under the same app in parallel (Heckler, 2021)
(Newman, 2021).
The consumer group will consume the JSON
message from the topic and will be parsed and
converted to an object class. A database entity
class and its service defined in the Java app
helps to write these details into the database
easily. (Mitra, 2021)

PostgreSQL
Figure 3 shows the database table and column
details

CustomerInfo
Column Name Data Type Nullable?
correlation_id Varchar (64) No (pk)
first_name Varchar (32) No
last_name Varchar (32) Yes

Figure 3: Database Table details

The table name will be CustomerInfo in the
PostgreSQL and will be created under the
schema sch_customer. This table holds the
customer information that is being produced in
the Kafka topics. The primary key for the table
will be the correlation id. This value is the same
as the key value in the Kafka message. The first
name and last name columns hold the respective
values from the Kafka value (Ferrari, 2020).

Technologies Used
Apache Kafka
Apache Kafka is an open-source distributed event
streaming platform for high-performance data
pipelines, streaming analytics, data integration
application (Andre, 2021).

Java with Spring Boot Framework

Spring Boot application helps developers to
create standalone applications that just run. It
comes with an embedded Tomcat web server
which helps to achieve this functionality without
relying on an external web server. Also, auto-
configuration and annotation are powerful
methods available with spring boot which reduce
many boilerplate codes.

PostgreSQL
Postgres is a powerful open-source relational
database system with reliability, feature
robustness, and performance. This database is
highly extensible, i.e., developers can define
their data types, build custom functions, and
write code in different languages without
recompiling the database.

5. Data Collection
This project does not contain any big data and
must check only that the data that is being
produced in the Kafka topic is finally get updated
in the database. So, it would be a good
approach to validate the data as a checklist. So,
data collection will be divided into three parts

• The data that is being produced by the
Java Spring Boot app

• The data that is being consumed by the
Java Spring Boot app

• The data is being persisted inside the
Postgres Database.

Java Spring Boot Producing message
The app is responsible for producing the
message to Kafka topic. As part of this project,
this will be handled inside the code by a
separate service by randomly generating the
data in the format mentioned in Figure 2. Load
testing is not in the scope of this project, so a
large load generation of data is not required.
This data will be shown in the logs by the app
and can be captured as part of the Kafka
produce logs.

Java Spring Boot Consuming message
The consumption of the message is performed
by the consumer service. The details will be
logged as part of the log module inside the
service, and the consumed data will be logged
into the log modules and will be thrown into the
console application.

Data is persisted in the Postgres Database
The final part is the data to be available in the
Postgres database. As part of the project, there
is a need to ensure that every message that is
being produced into the Kafka topic should be
available in the database. This data can be

5

collected by running a simple query against the
database to get the complete details.

6. Data Analysis
This research paper is not intended for Artificial
Intelligence or Machine Learning. So, as
mentioned in the data collection section, the
data is validated as a checklist.

Java Spring Boot Producing message
Figure 4 shows the log from the producer
service. A message is being produced to a Kafka
topic with a unique key. The message contains
the first name and last name, which are being
passed through a rest controller. The log service
will log the details in the console output.

Java Spring Boot Consuming message
Figure 5 shows the log from the consumer
microservice. The message that is being
produced by the producer service is consumed
by the consumer service, and the log service is
responsible for logging the details in the console
output.

Data is persisted in the Postgres Database
The final part is to verify that the data is
available in the database table. As shown in
Figure 6, the data that is being published on the
Kafka topic is being added to the database table.
The correlation id corresponds to the unique key
that is generated by the service during
publishing.

7. Finding
Some of the key findings of the research paper
are divided into two parts. First, the libraries
that are available for the development work, and
second, the performance of the execution for the
data flow from an end-to-end perspective.

Libraries for Development
As I was using the Spring Boot framework, the
development of the entire application required
interaction with Kafka and Postgres. Spring Boot
framework comes with many standard third-
party libraries that will ease the development.
Many of the boilerplate codes that are needed
will be handled by the libraries through the
backend, which helps the developers just to
focus on the development. The boilerplate code
needed only the configuration value as per the
project need. Because of this, the Java app
integration with Kafka as well as Postgres
worked well.

Performance of the Data
Though the performance of the application was
not in the scope of the research, here, I am

going to explain the performance of a single
message. Figure 7 shows the end-to-end time
taken for a single message. Within
microseconds, a single data object published to
the Kafka topic is available in the database. This
shows the efficiency of the Kafka streaming
application. So, in real-time, when there are
millions of data to handle, it is obvious that the
performance will not be compromised.

9. Conclusion
As mentioned in the introduction section, this
research paper focuses on developing
microservices that can publish and consume
messages from streaming applications like Kafka
and massage those data as per the need or
requirement and save it in the database for
specific use. This objective was fully achieved as
part of this project work.
Kafka publishing and consuming can be
performed in many ways, and this research
paper explored the Json way of publishing and
consuming data. It is also noticed that within
microseconds, a single data published to a Kafka
topic is available in the final database table. So,
when coming to real-time use, where there are
millions of data to be handled, it is obvious that
the performance will not be compromised, and
the app can scale quickly to satisfy the need.

10. Future Work
There is still a lot of work that could be done for
this project. The project completely works on the
local machines. As a first step, it can be
explored how this app can be available beyond a
local setup. For example, is there any open-
source public cloud for Kafka and Postgres
services?
As mentioned in the conclusion section, this
research paper focuses on the JSON approach
for data transmission. There is also another
mode of data transmission called the Avro
approach, and this uses the concept of the
schema for Kafka topics. A separate study can
be explored in this area on publishing and
consuming messages to Kafka with schema
registry and Avro approach.

11. REFERENCE

Tu, D. Q., Kayes, A. S. M., Wenny, R., &
Nguyen, K. (2020). IoT streaming data
integration from multiple
sources. Computing.Archives for Informatics and
Numerical Computation, 102(10), 2299-
2329. http://dx.doi.org/10.1007/s00607-020-
00830-9

http://dx.doi.org/10.1007/s00607-020-00830-9
http://dx.doi.org/10.1007/s00607-020-00830-9

6

Hanif, M., Lee, C., & Helal, S. (2020). Predictive
topology refinements in distributed stream
processing system. PLoS
One, 15(11)http://dx.doi.org/10.1371/journal.p
one.0240424

Zhang, F., Sun, G., Bowen, Z., & Liang, D.
(2021). Design and Implementation of Energy
Management System Based on Spring Boot
Framework. Information, 12(11),
457. http://dx.doi.org/10.3390/info12110457

Andre, D. R., Freitas, N., Duarte Alemão,
Guedes, M., Martins, R., & Barata, J. (2021).
Event-Driven Interoperable Manufacturing
Ecosystem for Energy Consumption
Monitoring. Energies, 14(12),
3620. http://dx.doi.org/10.3390/en14123620

Korolov, M. (2017). Microservices offer speed
and flexibility, but at a price: The benefits of
microservices are many, but they also come with
their own set of security and management
challenges. CSO
(Online), https://www.proquest.com/trade-
journals/microservices-offer-speed-flexibility-at-
price/docview/1873330691/se-
2?accountid=1230

Lubis, A. R., Fachrizal, F., & Maulana, H. (2017).
Database Management Optimization Using
PostgreSQL Replication Database in Database
System. Advanced Science Letters, 23(5), 4132-
4135. http://dx.doi.org/10.1166/asl.2017.8286

Fotache, M., & Cogean, D. (2013). NoSQL and
SQL Databases for Mobile Applications. Case
Study: MongoDB versus
PostgreSQL. Informatica Economica, 17(2), 41-
58. https://www.proquest.com/scholarly-
journals/nosql-sql-databases-mobile-
applications-case/docview/1462815925/se-2

Heckler, M. (2021). Spring Boot: Up and
Running (1st edition). O’Reilly Media, Inc.

Shapira, G., Palino, T., Sivaram, R., & Narkhede,
N. (2021). Kafka: The Definitive Guide, 2nd
Edition (2nd edition). O’Reilly Media, Inc.

Narkhede, N., Shapira, G., & Palino, T.
(2017). Kafka: the definitive guide: real-time
data and stream processing at scale. O'Reilly
Media, Inc.

Mitra, R. & Nadareishvili, I. (2021). Microservices :
up and running : a step-by-step guide to building
a microservices architecture (1st edition). O’Reilly.

Newman, S. (2021). Building microservices :
designing fine-grained systems (Second edition.).
O’Reilly Media, Incorporated.

Ferrari, L., & Pirozzi, E. (2020). Learn PostgreSQL :
build and manage high-performance database
solutions using PostgreSQL 12 and 13 (1st
edition). Packt Publishing.

http://dx.doi.org/10.1371/journal.pone.0240424
http://dx.doi.org/10.1371/journal.pone.0240424
http://dx.doi.org/10.3390/info12110457
http://dx.doi.org/10.3390/en14123620
https://www.proquest.com/trade-journals/microservices-offer-speed-flexibility-at-price/docview/1873330691/se-2?accountid=1230
https://www.proquest.com/trade-journals/microservices-offer-speed-flexibility-at-price/docview/1873330691/se-2?accountid=1230
https://www.proquest.com/trade-journals/microservices-offer-speed-flexibility-at-price/docview/1873330691/se-2?accountid=1230
https://www.proquest.com/trade-journals/microservices-offer-speed-flexibility-at-price/docview/1873330691/se-2?accountid=1230
http://dx.doi.org/10.1166/asl.2017.8286
https://www.proquest.com/scholarly-journals/nosql-sql-databases-mobile-applications-case/docview/1462815925/se-2
https://www.proquest.com/scholarly-journals/nosql-sql-databases-mobile-applications-case/docview/1462815925/se-2
https://www.proquest.com/scholarly-journals/nosql-sql-databases-mobile-applications-case/docview/1462815925/se-2

7

APPENDIX-A

Figure 4: Kafka Producer Service publishing

Figure 5: Kafka Consumer Service Consuming

Figure 6: Postgres Database with the entry

Figure 7: End-to-End time taken for a single message

8

APPENDIX-B
Demonstration Video:
https://youtu.be/_jFUy3EyLTI

GitHub Repo:
https://github.com/mohananand-city/cs687_kafka_springboot

https://youtu.be/_jFUy3EyLTI
https://github.com/mohananand-city/cs687_kafka_springboot

	Literature Review
	Review Conclusions
	Heckler, M. (2021). Spring Boot: Up and Running (1st edition). O’Reilly Media, Inc.

