

Software Documentation and Architectural Analysis

of Full Stack Development

Clark Jason Ngo
clarkngo@cityuniversity.edu

City University of Seattle

Dr. Jin Chang
kyongchang@cityu.edu

City University of Seattle

Dr. Sam Chung
chungsam@cityu.edu

City University of Seattle

Abstract

The purpose of this paper is to demonstrate how to decrease the barrier to entry for open source projects
and full stack web development. Documentation and architectural modeling are implemented to lessen
the steep learning curve for open source and full stack web development. The research will bring in ten
hands-on practices (HOPs) that would teach students to build a full stack web application. The research
will conduct the following: 1) Create documentation and architectural model for the hands-on practice.
2) Evaluate the documentation and architecture model with a survey.

Keywords: Software Documentation, Software Architecture, Open Source, Full Stack, MEAN

1. PROBLEM AND MOTIVATION

Open source software invites anyone with the
technical capability to contribute to the code
base. However, most open source software has a
big barrier to entry as there is no support for
visual architectural modeling (Kim, Chung, &
Endicott-Popovsky, 2014). Open source software
is very complex. It has a steep learning curve to
be able to contribute or use it. The non-existence
of documentation leads to further complexity. Full
stack web development is difficult to learn as well
(Shah, & Soomro, 2017).

A study by (Aghajani, et al., 2019) showed issues
in software documentation. A sample size of 955
document issues were surveyed in the study that
includes StackOverflow, GitHub, and mailing lists.
88% (840 issues) were GitHub issues and pull
requests. 50% (426 issues) out of the 88% (840

issues) were information content: “what”. 53%
(227 issues) were about missing or poor
document, and missing diagrams. Breakdown of
document issues: 50% on What (includes
documentation and diagram) 27% on Information
Content (How), 8% on Process Related, and 14%
on Tool Related.

A study by (Shah, 2017) showed difficulties in
learning Node.js, server-side component of MEAN
stack. A sample size of 80 developers were part
of study to answer survey questions. The
following shows the questions and the results: (1)
Learning of JavaScript for Node.js was a
challenge: 23.9% felt learning challenging and
44.8% felt learning a little bit of challenge. (2)
Learning of JavaScript for NoSQL Databases was
a challenge: 31.3% felt learning challenging and
20.9% felt learning a little bit of challenge. (3)
Event-Driven of Node.js challenging: 34.3% felt

learning challenging and 25.4% felt learning a
little bit of challenge. (4) Non-Blocking I/O
feature of Node.js challenging: 31.3% felt
learning challenging and 26.9% felt learning a
little bit of challenge. (5) Asynchronous
Processing feature of Node.js challenging: 38.8%
felt learning challenging and 17.9% felt learning
a little bit of challenge.

How can we reduce the steep learning curve from
both Open Source and Full Stack Development
with MEAN Stack?

2. BACKGROUND

Architectural Model
Unified Modeling Language (UML) notation is a
language that uses pseudo-code, actual code,
pictures, diagrams and others to help describe
systems. UML has advantages such as: (1) It will
not be misunderstood because it’s a formal
language, (2) straightforward and concise, (3)
comprehensive to describe all components of a
system, (4) scalable because it is usable for small
to big systems, (5) standard for vendors and
academics. However, as UML is an abstraction to
provide high-level overview, the notation will not
describe the small details. Still, UML is better than
detail overloading from modeling with code and
ambiguity from modeling with informal language
(Miles & Hamilton, 2006).

UML Documentation improves the software
maintenance. With UML providing overview and
structure, code changes can be quickly located,
and solving tasks is easier. On the contrary,
building UML documentation costs extra time to
build and not useful for easy and small tasks to
fix (Arisholm, Briand, Hove & Labiche, 2006).

Full Stack Web Development - MEAN Stack
MEAN stack consists of four technologies used
together. These are MongoDB (Data Tier),
Express (back-end framework), Angular (front-
end framework), and Node.js (back-end
environment). MEAN stack is a technology that
uses JavaScript across all components removing
the need for translation and saves build time
(Dunka, Emmanuel, & Oyerinde, 2018). See
Figure 1 for diagram on client-side, server-side,
and database using JavaScript.

Figure 1 End-to-end JavaScript (Shah, 2017)

Back-end with Node.js
Node.js is built for handling asynchronous I/O
while JavaScript is has a event loop built-in for
the client-side, see Figure 2 for Node.js
processing model.

Figure 2 Node.js Processing Model (Esostalgic, 2014)

These are the components that makes Node.js
fast in performance compared to other
environments. However, the event-
driven/callback approach makes Node.js difficult
to debug and learn as well. See Figure 3 for
Node.js System.

Node.js includes modules such as mongoose,
which is a MongoDB object modeling, and express
web application framework. Through node
modules, abstraction can be achieved, which
reduces the overall complexity of the MEAN stack.

Figure 3 Node.js System (Esostalgic, 2014)

Back-end with Express Framework
Express is a minimalist and unopinionated
application framework for Node.js. It is a layer on
top of Node.js that is feature-rich for web and
mobile development without hiding any Node.js
functionalities (Adhikari, 2016).

Front-end with Angular
Angular is a web development platform built in
TypeScript that provides developers with robust
tools for creating the client side of web
applications. It allows development of single-
page web applications where content changes
dynamically based on user behavior and
preferences. It features dependency injections to
ensure whenever a component is changed, other
components related to it will be changed
automatically. MVC (Model View Controller)

architecture, see Figure 4, can be applied with
Angular (Adhikari, 2016).

Figure 4 Model View Controller (Shah, 2017)

Database with MongoDB
MongoDB is a NoSQL database which stores data
in BJSON (Binary JavaScript Object Notation).
MongoDB became the de facto standard database
for Node.js applications to fulfill the JavaScript
everywhere using JSON (JavaScript Object
Notation) to transmit data across different tiers
(front-end, back-end, and database) (Adhikari,
2016).

Learning Curve
When we learn, we acquire new knowledge and
skill. The rate of knowledge or skill acquisition is
called the learning curve (Kang, & Hahn, 2009).
Learning is defined as obtaining knowledge
through studying and experiencing a subject
matter. The three concepts of learning according
to (Britto, R., Šmite, D., & Damm, L.-O., 2016)
are knowledge, skill, and competence. Knowledge
is information processed and absorbed through
structured or unstructured learning. Skills are
acquired through practice. Competence is the
effectiveness of an individual to a certain field.
Reducing a steep learning curve increases the
return-on-investment (ROI) for software
development as it will lead to faster building of
new features and fixing or bugs. It also increases
the productivity for developers who mentor
(Tüzün & Tekinerdogan, 2015).

Learning curve becomes steep when the topic to
be learned is complex such as software
architecture that has challenges on
understanding the theory behind it (design
principles, tradeoffs, architectural patterns, etc.),
visibility at scale only, and requiring
communication between different stakeholders.
The following principles were introduced to
address the challenges: (1) embrace open
source, (2) embrace collaboration, (3) embrace
open learning, (4) interact with architects, and
(5) combine breadth and depth. The approach for
tackling challenges were (1) apply theory to
practice, (2) contribute to the system, (3)
integrate architectural views, and (4) providing
feedback to other students. Additionally, reducing

the steep learning curve can be done through
mentoring. The use of markdown was
implemented to facilitate sharing, versioning, and
reviewing various systems (Van Deursen, et al.,
2017). Another study found another way to
reduce the steep learning curve through pairing
developers with mentors. The study showed that
activities in an Open Source Project (OS) with
mentored developers were significantly higher
than non-mentored developers (Fagerholm &
Sanchez, 2014).

Documentation
Documentation helps define what a project do,
why the project is useful, how users can start
using the project, where users can get help, and
also defines who maintains and contribute to the
project (Prana, Treude, Thung, Attapattu, & Lo,
2018). Why is documentation important? There
are dangers of internet search instead of looking
at software documentation. Users might use the
wrong information. Creators given an
unsatisfactory for software built due to lack of
good documentation (Van Loggem, 2014).

Documentation on Open Source
In open source software, documentation is mostly
created using a markdown file called
README.md. README is the custom standard
platform used for software distribution. This
markdown file is analogous to a website’s home
page. If the README.md is poorly written and
maintained, developers would not be attracted to
try out the technology. See Figure 5 for
comparison of README.md file of Node.js in
GitHub (Node.js, 2020) and Amazon Web
Services (AWS) home page (Amazon Web
Services, 2020).

Figure 5 Open Source README.md versus Website
Homepage

Amateur developers write documentation last. As
most software has no set end date that it will be
fully built and functional, you might end up
forgetting to write documentation or have written
it late the documentation is not as useful
anymore. Professional developers write
documentation first using Test-Driven
Development or Behavior-Driven Development
(Mastropasqua, 2016). Early and timely

documentation attract new developers to
collaborate on the open-source projects and
eases the on-boarding process to join it.

According to (Lee, 2018), best practices for
creating and maintaining a software
documentation are the following: (1) Include a
README or text file as it is more human-readable
then Hyper Text Markup Language (HTML). (2)
Use a style guide to tell users how to use it. (3)
Include a help command for developers without a
Graphical User Interface (GUI). (4) Provide link to
the full documentation to avoid cluttering the
README file. (5) Apply version control to support
versions of the project.

3. RELATED WORK

The key papers are compared with the availability
of the topics: (1) documentation, (2)
architecture, (3) open source, and (4) full stack.
See Table 1 for summary of key papers.

Topic [KRUC
95]

[KIM
14]

[ADMI
17]

[STAF
15]

Documen
tation

No Yes No No

Architecture
[4+1 View]

Yes Yes Yes Yes

Open
Source

Yes Yes Yes No

Full Stack
[MEAN]

No No No No

Table 1 Key Topics for Previous Work

The 4 + 1 View Model of Software
Architecture
This paper by Philippe Krutchen built a UML
architectural model using the 4 + 1 View Model,
which consists of the Logical View, Development
View, Process View, Physical View, and Scenarios.
The Logical View supports functional
requirements and used when the design method
is object-oriented. The Development View shows
the static organization of software in the
development environment. The Process View
shows the flow of synchronization in the design.
The Physical View shows the connection of
software to hardware. Scenarios puts together
the architectural models and validates them
through the perspective of the end-user
(Krutchen, 1995). See Figure 6 for 4 + 1 View
Model.

Figure 6 The 4 + 1 View Model

Software Architecture Model Driven
Reverse Engineering Approach to Open
Source Software Development
This paper by Kim designed architectural models
for deployment view for MITREid Connect, an
open source authentication protocol. See Figure 7
for Deployment View (Kim 2014).

Figure 7 Deployment View (Kim, 2014)

He also developed a design view to show an
overview to classes, object instances, and
message exchanges. See Figure 8 for Design View
(Kim, 2014).

Figure 8 Design View (Kim, 2014)

Technical Design for Angular Apps
This paper by Hans Admiraal designed
architectural diagram for Angular applications
with UML notation and color coding for the
package diagram to provide an overview to
Angular modules and their dependencies to each
other. See Figure 9 for package diagram
(Admiraal, 2017).

Figure 9 Package Diagram of Angular Modules (Admiraal,
2017)

He also designed a scenario-based sequence
diagram to show the activity flow and color-coded
based on the Angular modules. See Figure 10 for
Use Case View example.

Figure 10 Scenario of User Login (Admiraal, 2017)

An article showed a request and request data flow
sequence diagram. The diagram showed both the
request and response across the MEAN Stack that
includes the front-end, back-end, and database.

See Appendix A for Request/Response Data Flow
diagram (Stafford, 2015).

4. APPROACH AND UNIQUENESS

Topic [KRUC
95]

[KIM
14]

[ADMI
17]

[STAF
15]

[NGO
20]

Documen
tation

No Yes No No Yes

Architecture
[4+1 View]

Yes Yes Yes Yes Yes

Open
Source

Yes Yes Yes No No

Full Stack
[MEAN]

No No No No No

Table 2 Author’s Approach

The author’s approach was the combined
implementation of Kruchten’s 4+1 View, Kim’s
Design View and experiment validation, and
Admiraal’s color-coded diagrams. See Table 2 for
the author’s approach.

4.1 Experimental Design and Methods

The author used the online diagram tool,
Lucidchart, to build the diagrams from scratch.
These designs are validated with a software
engineer who has experience building full stack
applications.

Physical View with Deployment Diagram
The deployment diagram shows 3 servers: front-
end, back-end, and database. In the front-end,
we require the browser as angular applications
are browser-based web applications. The back-
end server hosts our Node.js with Express on top
of Node.js. In Express, we have the application
and mongoose on top of it. Express will handle
the communication on both front-end and
database. The database server only includes a
MongoDB. JSON is utilized to communicate across
servers. See Appendix B for deployment view of
MEAN stack.

Deploying in production has many options to
choose from. In the author’s use case, we
deployed the front-end in Amazon S3, the back-
end in EC2 instance, and the database in
MongoDB Atlas. See Appendix C for Production
Deployment.

Process View with Sequence Diagram
When an http request is made, the front-end will
be triggered an Angular will pick up the request.
The request will be passed internally in Angular
with Route sending a request for the view to
View/Template. View/Template will request the
Controller. The Controller will then create a http
request to a RESTful (Representational state

transfer) endpoint to the Server Side, which is
Express/Node.js. The request will then be passed
internally with Express/Node.js from its Route to
the Controller/Model. The Controller/Model will
make a request through the Mongoose ODM to
interact with the Database Server that has
MongoDB. MongoDB will process the request and
respond the callback to Express/Node.js.
Express/Node.js sends a JSON response to the
Angular Controller. Angular Controller would
respond with a view. See Appendix D for MEAN
stack request/response data flow

Development View with Package Diagram
In a book store application example, the package
diagram shows the dependency of each Angular
module to other Angular modules. See Appendix
E, for Angular Module Package Diagram.

Logical View with Class Diagram
On the server side, the book store application has
Book class the has the following attributes: title,
isbn, author, picture, and price. It also has the
following methods: addBook, fetchBooks,
fetchBook, updateBook, and deleteBook. See
Figure 11 for class diagram for Book class.

Figure 11 Class Diagram for Book Class

As our database is using a NoSQL database, the
diagram will be shown with the JSON format. See
Figure 12 for NoSQL diagram.

Figure 12 Diagram for NoSQL

Scenarios with Sequence Diagram

The scenario described is a user accessing a book
store application. When the user enters the URL,
JavaScript will be run and will hit the router of the
front-end server, which is AppRoutingModule.
AppRoutingModule will call the BooksComponent,
which will load fetchBooks as its dependency
injection. fetchBooks will then create an HTTP
request to the back-end server that has a router,
controller, and model to process the request and
request to the database server. Database server
processes the request and with the back-end
server waiting, will grab the data and sent it back
to the front-end server as a JSON response. The
front-end will now have the data and the template
view to show to the user. See Appendix F for
scenarios of a book store application.

5. EVALUATION

The method to evaluate the impact of the
documentation and architectural diagram in
decrease the learning curve of full stack
development is through a survey. The author
used Google Forms to create two similar survey
forms. They both ask for information about the
participants, assessment before reading the
documentation, and assessment after reading the
documentation. The only difference with the two
survey form is the documentation they will
assess. One is assessing the official
documentation for MEAN stack and the other is
the author’s documentation for MEAN stack. See
Appendix G for author’s documentation, see
Appendix H for survey for official documentation,
and see Appendix I for survey for author’s
documentation.

The evaluation method was through student
research group participation, which might have
potential bias due to the testers and test subject
acquainted with one another. The survey had a
small sample size that might not be considered a
good representation.

6. RESULTS AND FINDINGS

For the survey on the official documentation, we
surveyed 9 students who are in the computer
science program with 5 students have 0-1 years
of experience building software, doesn’t know
UML, Full Stack Web Development, and MEAN
Stack. After reading the official documentation,
the 6 students saying it increased there
understanding of MEAN stack and the description
and diagrams in the documentation was helpful.
The official documentation got an overall rating of
4 out 5 for 8 students. The routing diagram was
the most helpful in increasing their
understanding. Most respondents suggested to

show more diagrams for explaining the
technology. See Appendix J for the survey results
of the official documentation.

For the survey on the author’s documentation, we
surveyed 6 students who are or had a degree in
computer science. 3 students have 0-1 years of
experience building software and 4 students have
2 or more years of experience building software.
On average, 3 students have used and has work
experience with UML, Full Stack Web
Development, and MEAN Stack. After reading the
author’s documentation, the 5 students said that
it significantly increased the understanding of
MEAN stack and the description and diagrams in
the documentation was very helpful. The author’s
documentation got 57% response of 4 out of 5
and 43% response of 5 out 5 for their overall
rating of the author’s. The restaurant analogy and
process view sequence diagram were the most
helpful in increasing their understanding. Most
respondents suggested to add more description
and more examples for the documentation. See
Appendix K for the survey results of the author’s
documentation.

To compare the two results, the average return
of high-level understanding to 15-minute time
spent was used. It is calculated by using each
result’s average score of all responses divided by
the max score of 5. No need to divide by 15-
minute as the same amount of time was used for
the documentation comprehension portion of the
survey. The average return of high-level
understanding to 15-minute time spent were
67% for the official documentation and 80% for
the author’s documentation. With this small
sample size, it shows that author’s
documentation is 13% better than the official
documentation for return on high-level
understanding.

7. FUTURE WORK

With UML Notation, we can easily decouple the
technology stack and add integrate new
technologies. For author’s future work, the MEAN
Stack scenario view using sequence diagram was
extended to add offline capabilities, which is one
of the features of a Progressive Web App (PWA).
PWA is an enhancement strategy to create cross-
platform web application. See Appendix J for the
Progressive Web Application Scenario View using
Sequence Diagram. A physical view using
deployment diagram was created for PWA as well.
It shows how adding IndexedDB wrapper in the
Angular application to communicate with
IndexedDB, a client-side storage. It also shows
service worker and cache storage to store data

and be retrieved when the application’s internet
connectivity is offline. See Appendix L for the
Progressive Web Application Scenario View using
Sequence Diagram.

8. CONCLUSION

The learning curve from open source full stack
web development is decreased with the help of
high-level overview diagrams. The author’s
documentation is 13% more effective than the
official documentation to decrease the learning
curve. Documentation with architectural
modeling adds additional time and resources to
build. To decrease the time and resources to build
these diagrams, high-level overview diagrams
should be built instead of low-level. Most open
source full stack development only have text
descriptions and code base in their
documentations, which make it too verbose.
Implementing architectural modeling in the
documentation of an open source full stack
development gives a visualization that the
developer can easily follow and digest the high-
level concept. Thus, decreasing the learning
curve for the developers.

8. REFERENCES

Adhikari, A. (2016). Full Stack JavaScript: Web

Application Development with MEAN.
Retrieved from:
https://pdfs.semanticscholar.org/547a/f8ea2
05a8cc7c02506f58c9599a447da07a7.pdf

Adzic, G., & Chatley, R. (2017). Serverless

Computing: Economic and Architectural
Impact. Proceedings of the 2017 11th Joint
Meeting on Foundations of Software
Engineering, 884-889

Admiraal., H. (2017) Technical Design in UML for

Angular Applications

Aghajani, E., Nagy, C., Vega-Márquez, L.,

Linares-Vásquez, M., Moreno, L., Bavota, G.,
& Lanza, M. (2019). Software documentation
issues unveiled. In Proceedings of the 41st
International Conference on Software
Engineering (ICSE ’19). IEEE Press, 1199–
1210. Retrieved from https://dl-acm-
org.proxy.cityu.edu/doi/abs/10.1109/ICSE.2
019.00122

Amazon Web Services. (2020). Amazon Web

Services. Retrieved from:
https://aws.amazon.com/

Arisholm, E., Briand, L., Hove, S., & Labiche, Y.

(2006). The Impact of UML Documentation on
Software Maintenance: An Experimental
Evaluation. IEEE Transactions on Software
Engineering. 32(6), 365-381. Retrieved from:
https://ieeexplore.ieee.org/document/16502
13

Britto, R., Šmite, D., & Damm, L.-O. (2016).

Group Learning and Performance in a Large-
scale Software Project: Results and Lessons
Learned. Retrieved from https://www.diva-
portal.org/smash/get/diva2:1143810/FULLT
EXT01.pdf.

Dunka, B., Emmanuel, E., & Oyerinde Y. (2018).

Simplifying Web Application Development
Using-Mean Stack Technologies.
International Journal of Latest Research in
Engineering and Technology (IJLRET).

Esostalgic. (31, July, 2014). After much research

and photoshop, I am proud to give you the
finalized #nodejs System diagram. Retrieved
from
https://mobile.twitter.com/Esostalgic/status/
494959181871316992

Fagerholm, F., Sanchez Guinea, A., Borenstein,

J., & Munch, J. (2014). Onboarding in Open
Source Projects. IEEE Software, 31(6), 54–
61. Retrieved from:
https://doi.org/10.1109/MS.2014.107

Fernandes, J., Gomes, R., Prada, R. & Ferrão, L.

(n. d.) Softening the Learning Curve of
Software Development Tools. Retrieved from
http://www.joaofn.com/pdf/softening-the-
learning-curve.pdf

Irshad, W. (2017). Five Common Mistakes in

Agile. Retrieved from
https://www.knowledgehut.com/blog/agile/fi
ve-common-mistakes-in-agile.

Kang, K. & Hahn, J. (2009). Learning and

Forgetting Curves in Software Development:
Does Type of Knowledge Matter? Retrieved
from:
https://pdfs.semanticscholar.org/05d1/a1ff8
b17168bae748dca886ee4b3299f0dea.pdf

Kim, W., Chung, S., & Endicott-Popovsky, B.
(2014). Software Architecture Model Driven
Reverse Engineering Approach to Open
Source Software Development. Proceedings
of the 3rd annual conference on Research in
information technology. Retrieved from
https://www.tacoma.uw.edu/sites/default/fil
es/sections/InstituteTechnology/W_Kim.pdf

Kruchten, P.B. (1995). The 4+1 View Model of

architecture, IEEE Software. 12(6). 42 –50.
Retrieved from:
https://pdfs.semanticscholar.org/c5f4/9f3fe7
624bd8ecfc5321d8e7b64a505b8f67.pdf

Lee, B. (2018). Ten simple rules for documenting

scientific software. PLOS Computational
Biology. 14(12). Retrieved from
https://journals.plos.org/ploscompbiol/articl
e?id=10.1371/journal.pcbi.1006561.

Mastropasqua, F. (2016). You Might Be an

Amateur Programmer and Not Even Know It.
Retrieved from
https://www.clearlyagileinc.com/agile-
blog/2016/5/21/you-might-be-an-amateur-
programmer-and-not-even-know-it.

Miles, R., Hamilton, K. (2006). Learning UML

2.0. Switzerland: O'Reilly Media.

Morgan, A., (2017). The Modern Application

Stack – Part 1: Introducing the MEAN Stack.
Retrieved from:
https://www.mongodb.com/blog/post/the-
modern-application-stack-part-1-
introducing-the-mean-stack

Node.js. (2020). Node.js. Retrieved from

https://github.com/nodejs/node

Prana, G. A. A., Treude, C., Thung, F., Atapattu,

T., & Lo, D. (2018). Categorizing the Content
of GitHub README Files. Retrieved from
https://link.springer.com/article/10.1007/s1
0664-018-9660-3.

Shah, H., & Soomro, T. (2017) Node.js

Challenges in Implementation. Retrieved
from
https://www.researchgate.net/publication/3
18310544_Nodejs_Challenges_in_Implemen
tation

Stafford, Gary. (2015) Calling Third-Party HTTP-
based RESTful APIs from the MEAN Stack.
Retrieved from:
https://programmaticponderings.com/tag/m
ean-stack/

Tüzün, E. & Tekinerdogan, B. (2015). Impact of

Experience Curve on ROI in Software Product
Line Engineering. Inf. Softw. Technol., vol.
59, no. C, pp. 136–148. Retrieved from
https://doi.org/10.1016/j.infsof.2014.09.008

Van Deursen, A., Aniche, M., Aué, J., Slag, R., De

Jong, M., Nederlof, A., & Bouwers, E. (2017).
A Collaborative Approach to Teaching
Software Architecture. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17).
Association for Computing Machinery, New
York, NY, USA, 591–596. Retrieved from:
https://doi-
org.proxy.cityu.edu/10.1145/3017680.3017
737

Van Loggem, B. (2014). Software

Documentation: a Standard for the 21st
Century. ISDOC '14: Proceedings of the
International Conference on Information
Systems and Design of Communication
(ISDOC ’14). Association for Computing
Machinery, New York, NY, USA, 149–154.
Retrieved from https://dl-acm-
org.proxy.cityu.edu/doi/pdf/10.1145/261816
8.2618192

Appendices and Annexures

Appendix A
4 + 1 View Sequence Diagram of MEAN Stack Request/Request Data Flow (Stafford, 2015)

Appendix B

MEAN Stack Deployment View

Appendix C
MEAN Stack Deployment View for Production

Appendix D
MEAN Stack Request/Response Data Flow

Appendix E
Angular Module Package Diagram

Appendix F
MEAN Stack Scenario using Sequence Diagram

Appendix G
Documentation

MEAN Stack

MEAN Stack is a full-stack JavaScript open-source solution. MEAN Stack consist of MongoDB, Express,
Angular, and Node.js. The idea is to solve the common issues with connecting those frameworks, build
a robust framework to support daily development needs, and help developers use better practices
while working with popular JavaScript components.

Back-end with Node.js

Node.js is built for handling asynchronous I/O while JavaScript is has a event loop built-in for the
client-side that makes Node.js fast in performance compared to other environments. However, the
event-driven/callback approach makes Node.js difficult to debug and learn as well.

Node.js includes modules such as mongoose, which is a MongoDB object modeling, and express web
application framework. Through node modules, abstraction can be achieved, which reduces the overall
complexity of the MEAN stack.

Back-end with Express Framework

Express is a minimalist and unopinionated application framework for Node.js. It is a layer on top of
Node.js that is feature-rich for web and mobile development without hiding any Node.js
functionalities.

Front-end with Angular

Angular is a web development platform built in TypeScript that provides developers with robust tools
for creating the client side of web applications. It allows development of single-page web applications
where content changes dynamically based on user behavior and preferences. It features dependency
injections to ensure whenever a component is changed, other components related to it will be changed
automatically.

Database with MongoDB

MongoDB is a NoSQL database which stores data in BJSON (Binary JavaScript Object Notation).
MongoDB became the de facto standard database for Node.js applications to fulfill the JavaScript

everywhere using JSON (JavaScript Object Notation) to transmit data across different tiers (front-end,
back-end, and database).

Physical View using Deployment Diagram

Who uses or what it shows:

• System engineer
• Topology
• Communications

Video Demo

The deployment diagram shows 3 servers: front-end, back-end, and database. In the front-end, we
require the browser as angular applications are browser-based web applications. The back-end server
hosts our Node.js with Express on top of Node.js. In Express, we have the application and mongoose
on top of it. Express will handle the communication on both front-end and database. The database server
only includes a MongoDB. JSON is utilized to communicate across servers.

In our first build of MEAN Stack, we’ll be deploying locally using our local machine (localhost) to
deploy the front-end server, back-end server, and database server. We’ll be using the default ports of
the following: Angular - port 4200, Node.js/Express – port 3000, and MongoDB – port 27017.

The diagram below shows the full stack web application in UML notation.

In our first build of MEAN Stack, we’ll be deploying locally using our local machine (localhost) to deploy
the front-end server, back-end server, and database server. We’ll be using the default ports of the
following: Angular - port 4200, Node.js/Express – port 3000, and MongoDB – port 27017.

Moving further to actual production, the first step to migrate to the cloud is our database. For MongoDB,
MongoDB Atlas was chosen as the cloud solution.

The last step to production deployment is uploading our front-end code to Amazon S3 with AWS,
uploading the back-end in an EC2 Instance with AWS. They would all communicate to each other with
HTTP endpoints.

Here's another diagram to show our production deployment without using UML notation.

Restaurant Analogy for Live Presentation

As the main topic is about tackling the steep learning curve, a restaurant analogy is shown to let the
user understand and retain the process for the request and response process for the full stack
application.

The customer (end-user) requests his order through the waiter (controller) and the waiter hands over
the request to the person at the order window (service factory). These three components makes up the
front-end server. The service factory will be the one to communicate with the cook (controller) in the
back-end. The cook will then grab the necessary ingredients (data) in the fridge (database server).

The fridge will be able to provide the necessary material (data) to the cook in the back-end. The cook
can now process that data and send back to the service factory of the front-end. The controller
(waiter) will hand-over the prepared meal to the customer (user). The customer will now be able to
consume the meal (data).

Process View using Sequence Diagram

Who uses or what it shows:

• Integrators
• Performance
• Scalability

Video Demo

In the process view, the front-end server and back-end server are first shown separately then connect
them together with the database server. In the first example, Angular application was deployed with
hard-coded JSON in a service.ts file (located in the Service Factory).

The Angular application can communicate to third-party APIs to grab data and display to the user.

In our back-end, the Node.js application starts with a hard-coded JSON that can be processed and
respond with a JSON as well.

This back-end can be connected to third-party APIs or a database server to grab JSON, process, and
send back to the requester.

With the front-end server, back-end server, and database server process explained, the combination
of these three are shown below:

When an http request is made, the front-end will be triggered an Angular will pick up the request. The
request will be passed internally in Angular with Route sending a request for the view to View/Template.
View/Template will request the Controller. The Controller will then create a http request to a RESTful
(Representational state transfer) endpoint to the Server Side, which is Express/Node.js. The request
will then be passed internally with Express/Node.js from its Route to the Controller/Model. The
Controller/Model will make a request through the Mongoose ODM to interact with the Database Server
that has MongoDB. MongoDB will process the request and respond the callback to Express/Node.js.
Express/Node.js sends a JSON response to the Angular Controller. Angular Controller would respond
with a view.

Scenario View using Sequence Diagram

Who uses or what it shows:

• Describe interactions between objects and between processes

Video Demo

The scenario described is a user accessing a book store application. When the user enters the URL,
JavaScript will be run and will hit the router of the front-end server, which is AppRoutingModule.
AppRoutingModule will call the BooksComponent, which will load fetchBooks as its dependency injection.
fetchBooks will then create an HTTP request to the back-end server that has a router, controller, and
model to process the request and query the database server. Database server processes the query and
with the back-end server waiting, will grab the data and sent it back to the front-end server as a JSON
response. The front-end will now have the data and the template view to show to the user.

Development View using Package Diagram

Who uses or what it shows:

• Programmers
• Software Management

Video Demo

The package view of the Angular application shows that every Angular Component is imported in the
AppModule. AppModule and AppRoutingModule is dependent on BooksComponent. The
BooksComponent is dependent on BookDetailComponentDialog and ApiService.

The package view of the Node.js application shows that all CRUD operations (controllers) such as fetch
all books, fetch a book, update a book, and delete a book are imported by the app. Also, all the CRUD
operations logic resides in the model book.

Logical View using Class Diagram

Who uses or what it shows:

• End-user
• Functionality

Video Demo

The book store application only showcased a single class called Book. The class members are: title,
isbn, author, picture and price. The methods are: addBook, fetchBooks, fetchBook, updateBook, and
deleteBook.

The model Book’s structure in JSON format.

Appendix H
Survey for Official Documentation

Information about the participant
1. Job Title
Choose one:

• Student

• Employed Tech Role
• Employed Non-tech Role
• Other:

2. Highest Educational Attainment or Currently Studying
Choose one:

• Bachelor - Computer Science Degree
• Bachelor - Non-computer Science Degree
• Masters - Computer Science Degree
• Masters - Non-computer Science Degree
• Other:

3. Years of experiencing with building software (includes building personal projects)
Choose one:

• 0-1
• 2-3
• 4-5
• 5+

Survey for Capstone
This survey consists of two parts: (1) Assessment before checking the documentation, and (2)
Assessment after checking the documentation.

Part 1 - Assessment before checking the documentation

 None Know

concepts
Experimented Built/contributed Work

experience
Documentation 0 1 2 3 4
Architectural
Analysis

0 1 2 3 4

Unified
Modeling
Language

0 1 2 3 4

Full Stack Web
Application

0 1 2 3 4

MEAN Stack 0 1 2 3 4
Open Source 0 1 2 3 4

Part 2 - Assessment after checking the documentation.
Please spend 15-minutes to read and understand the documentation below:
http://meanjs.org/docs/0.5.x/#overview

You are free to go anywhere in the documentation

1. Did the documentation increase your understanding
Not really 1 2 3 4 5 Very much

2. Was the description in the documentation helpful?
Not really 1 2 3 4 5 Very much

3. Were the images/diagrams helpful in your understanding?
Not really 1 2 3 4 5 Very much

4. Which diagram was the most helpful in your understanding?
Long answer text

5. Overall rating of the documentation?
Poor 1 2 3 4 5 Excellent

6. Any suggestions or feedback for the documentation? *
Long answer text

Appendix I
Survey for Author’s Documentation

Information about the participant
1. Job Title
Choose one:

• Student
• Employed Tech Role
• Employed Non-tech Role
• Other:

2. Highest Educational Attainment or Currently Studying
Choose one:

• Bachelor - Computer Science Degree
• Bachelor - Non-computer Science Degree
• Masters - Computer Science Degree
• Masters - Non-computer Science Degree
• Other:

3. Years of experiencing with building software (includes building personal projects)
Choose one:

• 0-1
• 2-3
• 4-5
• 5+

Survey for Capstone
This survey consists of two parts: (1) Assessment before checking the documentation, and (2)
Assessment after checking the documentation.

Part 1 - Assessment before checking the documentation

 None Know

concepts
Experimented Built/contributed Work

experience
Documentation 0 1 2 3 4
Architectural
Analysis

0 1 2 3 4

Unified
Modeling
Language

0 1 2 3 4

Full Stack Web
Application

0 1 2 3 4

MEAN Stack 0 1 2 3 4
Open Source 0 1 2 3 4

Part 2 - Assessment after checking the documentation.
Please spend 15-minutes to read and understand the documentation below:
https://github.com/clarkngo/cityu_capstone/blob/master/README.md

You are free to go anywhere in the documentation

1. Did the documentation increase your understanding
Not really 1 2 3 4 5 Very much

2. Was the description in the documentation helpful?
Not really 1 2 3 4 5 Very much

3. Were the images/diagrams helpful in your understanding?
Not really 1 2 3 4 5 Very much

4. Which diagram was the most helpful in your understanding?
Long answer text

5. Overall rating of the documentation?
Poor 1 2 3 4 5 Excellent

6. Any suggestions or feedback for the documentation? *
Long answer text

Appendix J
Survey Results for Official Documentation

Part 1 - Assessment before checking the documentation

Part 2 - Assessment after checking the documentation.

Part 2 - Which diagram was the most helpful in your understanding?

9 responses
folders
part1
Routing
Routing image
Breaking down routing
Cmd line examples
ROUTING DIAGRAM
Routign one.

PART 2 - What parts of the documentation were most useful or valuable to you?

9 responses
server test
part2
Mean
Short description on the topics
The CLI prompts for installation and work through
The command examples
ROUTING
Troubleshooting

PART 2 - Any suggestions or feedback for the documentation?

9 responses
nope
no

More images, better intro, explain the concept first.
Showing how the front end and back end connectivity takes place would have been better.
None
More pictures. Shorter tech sections. More engaging color scheme. Design for users not for
developers.
MORE DETAILS THAT EXPLAIN ANGULAR JS BETTER
Can make it like Mendix academic. Then people know steps order.

Appendix K
Survey Results for Author’s Documentation

Part 1 - Assessment before checking the documentation

Part 2 - Assessment after checking the documentation

Part 2 - Which diagram was the most helpful in your understanding?

7 responses
The one about Express
The one before "retaurant analogy"
Scenarios using Sequence Diagram
Restaurant Analogy
UML notation and restaurant analogy
Physical view using development diagram
Restaurant Analogy and Process View using Sequence Diagram

PART 2 - What parts of the documentation were most useful or valuable to you?

7 responses
Process View using Sequence Diagram
The one talking about TCP/IP
Since i am familiar with dynamic web programming with java, i appreciated you explaining how
http request and responses are actually handled.
Part showing how each process works
Images are easy to understand for non-techknowledge person
Development View using Package Diagram. Because I wanted to see the code after looking at
the documentation.

PART 2 - Any suggestions or feedback for the documentation?

7 responses
Maybe add a table of contents?
no
It can add more examples for the document.

More description would be amazing
Due to time limit, I had to skim the documentation, so hard to say about the detailed
improvements. But perhaps trying explaining with video ? Some people prefer watching than
reading.
Visualized explanation is very good for people who don't have enough knowledge.
1. not many people really understand how powerful or what express' purpose really is. you can
add some more on that - this will help enrich the docs more 2. this restaurant analogy is really
good. one comment is the cook and fridge sometimes can optionally have a service in between
them (which can be the "cook/ chef slaves") - just fyi, not required to add it. maybe optional info.
3. "They would all communicate to each other with HTTP endpoints." but the diagram shows
https. You should say "with HTTP / HTTPS endpoints" - http and https use different ports and
https require certs (they are not the same) 4. front-end is good enough. don't need to say front-
end server

Appendix J
Progressive Web Application Scenario View using Sequence Diagram

Appendix L
Progressive Web Application Physical View using Deployment Diagram

